Measure on the Inductive Limit of Projection Lattices

M. S. Matvejchuk¹

Received April 30, 1993

A probability measure on a nondecreasing net of lattices of orthogonal projections in von Neumann algebras is extended to a probability on the inductive limit of the lattices.

Let $\{\mathfrak{A}_{\alpha}\}$ be a nondecreasing net of von Neumann algebras acting in a Hilbert space \mathscr{H} and \mathfrak{A} be the von Neumann algebra generated by the family \mathfrak{A}_{α} , i.e., $\mathfrak{A} = (\bigcup_{\alpha} \mathfrak{A}_{\alpha})''$. The algebra \mathfrak{A} is called the inductive limit of the set $\{\mathfrak{A}_{\alpha}\}$. By analogy, the lattice \mathfrak{A}^{Π} of all orthogonal projections from \mathfrak{A} is called the inductive limit of the lattices $\{\mathfrak{A}_{\alpha}^{\Pi}\}$ of all orthogonal projections from $\{\mathfrak{A}_{\alpha}\}$. We call a function $\mu: \bigcup_{\alpha} \mathfrak{A}_{\alpha}^{\Pi} \to \mathbb{R}^{+}$ a probability measure provided $\mu(\mathbf{I}) = 1$ and $\mu(p) = \sum_{\beta} \mu(p_{\beta})$, wherein $p = \sum_{\beta} p_{\beta}$ and $p, p_{\beta} \in \bigcup_{\alpha} \mathfrak{A}_{\alpha}^{\Pi}$. The latter condition is essential even in the classical case.

Note that in the proof of the following theorem we will not use Gleason's theorem or its analogs.

Theorem. Let a von Neumann algebra \mathfrak{A} of countable type not containing any type I_2 direct summand be the inductive limit of von Neumann algebras $\{\mathfrak{A}_{\alpha}\}$. Then any probability measure $\mu: \bigcup_{\alpha} \mathfrak{A}_{\alpha}^{\Pi} \to [0, 1]$ can be extended to a probability on \mathfrak{A}^{Π} .

The proof will consist of several steps.

(i) Let us establish the existence of reduced subalgebras to which we will extend μ by a strong continuity. Let $\mathscr{S}(a) \equiv \{q \in \bigcup_{\alpha} \mathfrak{A}_{\alpha}^{\Pi} : \mu(q) > a\varphi(q)\}$. Here and in what follows φ is a faithful normal state on \mathfrak{A} . Take an arbitrary projection $(0 \neq) p \in \bigcup_{\alpha} \mathfrak{A}_{\alpha}^{\Pi}$ and choose a number t > 0 such that $t\varphi(p) > \mu(p)$. Then for every projection $q \in \mathscr{S}(t)$ with $q \leq p$ we have

1927

¹Department of Mathematics and Mechanics, Kazan State University, 420008 Kazan, Russia.

 $t\varphi(q) < \mu(q)$. We fix an arbitrary $\varepsilon \in (0, 1)$. Choose a projection p_1 $(\equiv p_1') \in \mathscr{S}(t), p_1 \leq p$, with

$$\sup\{\mu(q); q \in \mathscr{S}(t), q \le p\} - \mu(p_1) < \varepsilon$$

By the definition of p_1 the conditions $q \in \mathscr{S}(t)$, $q \perp p_1$, and $q \leq p$ imply $0 \leq t\varphi(q) < \mu(q) < \varepsilon$. Next, choose a projection p_2 ($\equiv p'_2$) $\in \mathscr{S}(t)$, $p_2 \perp p_1$ such that $p_2 \leq p$ and

$$\sup\{\mu(q); q \in \mathscr{S}(t), q \le p - p_1\} - \mu(p_2) < \varepsilon^2$$

Let us continue the process by induction. If p_1, \ldots, p_n are already defined, then take a projection p_{n+1} ($\equiv p_{n+1}^t$) in $\mathcal{S}(t)$ (if one exists) with $p_{n+1} \leq p - \sum_{i=1}^n p_i$ and

$$\sup\left\{\mu(q); q \in \mathscr{G}(t), q \leq p - \sum_{i=1}^{n} p_i\right\} - \mu(p_{n+1}) < \varepsilon^{n+1}$$

By the construction, we have

$$0 \le t\varphi(p_{n+1}) < \mu(p_{n+1}) < \varepsilon^n \tag{1}$$

If the process stops at step n, then we put $p_m = 0$ for all m > n.

We denote by $G_t(p)$ the projection $p - \sum_{m=1}^{\infty} p_m$. By the definition of a number t we have $G_t(p) \neq 0$. In general, $G_t(p) \notin \bigcup_{\alpha} \mathfrak{A}_{\alpha}^{\Pi}$. The sequence of the projections $\{e_m(t)\}_{m=1}^{\infty}$ where $e_m(t) \equiv p - \sum_{n=1}^{m} p_n$ is called determining for $G_t(p)$. By the inequality (1),

$$\varphi(p) \ge \varphi(G_t(p)) = \varphi(p) - \sum_{m=1}^{\infty} \varphi(p_m) > \varphi(p) - \frac{1}{t(1-\varepsilon)}$$
(2)

By the definition of projections $e_m(t)$, for every projection $e_1 \le e_m(t)$, $e_i \in \bigcup_{\alpha} \mathfrak{A}_{\alpha}^{\Pi}$ we obtain $\mu(e_i) \le t\varphi(e_i) + \varepsilon^m$. Let $\{e_i\}_{i=1}^k \subset \bigcup_{\alpha} \mathfrak{A}_{\alpha}^{\Pi}$ be an orthogonal family, $e \equiv \sum_{i=1}^k e_i \le e_m(t)$ and $\varepsilon_i \equiv \mu(e_i) - t\varphi(e_i)$. Then

$$\sum_{i} \varepsilon_{i} = \sum_{i} \left(\mu(e_{i}) - t\phi(e_{i}) \right) = \mu(e) - t\phi(e) < \varepsilon^{m}$$

If all numbers $\lambda_i > 0$, then

$$\sum_{i} \lambda_{i} \mu(e_{i}) = t \sum_{i} \lambda_{i} \varphi(e_{i}) + \sum_{i} \lambda_{i} \varepsilon_{i} \leq t \sum_{i} \lambda_{i} \varphi(e_{i}) + \varepsilon^{m} \max_{i} \lambda_{i}$$

Thus the following remark is valid.

Remark. Let $a = \int \lambda \, de_{\lambda}^{a}$ be the spectral decomposition of the operator $a \in \bigcup_{\alpha} \mathfrak{A}_{\alpha}^{\Pi}$. If $a \leq \lambda e_{m}(t)$ for some $\lambda > 0$, then $\dot{\mu}(a) \equiv \int \lambda \, d\mu(e_{\lambda}^{a}) \leq t\varphi(a) + ||a||\varepsilon^{m}$.

Measure on the Inductive Limit of Projection Lattices

Lemma 1. For every projection $\bar{p} \in \bigcup_{\alpha} \mathfrak{A}_{\alpha}^{\Pi}$ ($\bar{p} \neq 0$) there exists a family $G_{t_n}(p_n)$ ($p_n \leq \bar{p}$) of mutually orthogonal projections such that $\sum_n G_{t_n}(p_n) = \bar{p}$ and for every n_0 of its initial members there exist numbers $N(t_n, n_0)$ such that for $m > N(t_n, n_0)$ the projections $e_m(t_k)$ in the determining sequence for $G_{t_k}(p_k)$ are mutually orthogonal for distinct $k = 1, 2, \ldots, n_0$.

Proof. Take any projection $G_t(\bar{p})$ $(p_1 \equiv \bar{p}, t_1 \equiv t)$ as the first member. If $G_t(\bar{p}) < \bar{p}$, then choose a number *m* such that for the projection $p_2 \equiv \sum_{n=1}^{m} p_n^{t_1}$ $[=\bar{p} - e_m(t_1)]$ the inequality $2/3\varphi[\bar{p} - G_{t_1}(p_1)] < \varphi(p_2)$ is fulfilled. By virtue of inequality (2) a number t_2 can be found such that

$$\varphi(G_{t_2}(p_2)) \ge 1/2\varphi[\bar{p} - G_{t_1}(p_1)]$$

Obviously $G_{t_1}(p_1) \perp G_{t_2}(p_2)$. Let us continue the process by induction. Let the projections $G_{t_1}(p_1), \ldots, G_{t_n}(p_n)$ be already defined and $\varphi(\bar{p} - \sum_{i=1}^{n} G_{t_i}(p_i)) > 0$. Also, let $\{e_m(t_i)\}_{m=1}^{\infty}$ be the determining sequence for $G_{t_i}(p_i)$ $(1 \le i \le n)$. Choose numbers m_1, \ldots, m_n such that

$$\varphi\left(\bar{p}-\sum_{j=1}^{n}p_{m_{j}}(t_{j})\right)>2/3\varphi\left(\bar{p}-\sum_{j=1}^{n}G_{t_{j}}(p_{j})\right)$$

and denote by p_{n+1} the projection $\bar{p} - \sum_{j=1}^{n} e_{m_j}(t_j)$. Next, find a number t_{n+1} such that $\varphi(G_{t_{n+1}}(p_{n+1})) > 1/2\varphi(\bar{p} - \sum_{i=1}^{n} G_{t_i}(p_i))$. Thus

$$\varphi\left(\bar{p}-\sum_{i=1}^{n+1}G_{t_i}(p_i)\right) \leq \frac{1}{2}\,\varphi\left(\bar{p}-\sum_{i=1}^nG_{t_i}(p_i)\right) \leq \frac{1}{2^n}\,\varphi(\bar{p}-G_{t_1}(p_1)) \xrightarrow[n\to\infty]{} 0$$

By the definition, the sequence $\{G_{t_n}(p_n)\}\$ satisfies the assertion of the lemma. The process will stop at the step k only if $\bar{p} = \sum_{i=1}^{k} G_{t_i}(p_i)$ and $e_{m_i}(t_i) = G_{t_i}(p_i)$ for some m_i for all $1 \le i \le k$. Thus the family $G_{t_i}(p_i)$ is suitable. The lemma follows.

We denote by \mathfrak{N} the set of projections $q \in \mathfrak{A}^{\Pi}$ satisfying $q \leq \sum_{m=1}^{n} G_{t_m}(p_m)$ for some orthogonal family $\{G_{t_m}(p_m)\}$ as in the lemma 1.

(ii) Extending μ to the projections in \mathfrak{N} . Let the projections $e, f \in \mathfrak{A}^{\Pi}$ and $\Delta \equiv \varphi(ef^{\perp}e)$. By the construction used in Gunson (1972), there exist decompositions $e = e_0 + e_1$, $f = f_0 + f_1$, $e_0, e_1, f_0, f_1 \in \mathfrak{A}^{\Pi}$ such that $\varphi(e_1) \leq \Delta, \varphi(f_1) \leq \varphi^{1/2}((e - f)^2) + \Delta + \Delta^{1/2}$, and $||e_0 - f_0|| \leq \Delta^{1/2}$.

Let projection $G_t(p)$ be arbitrary and let $\{e_m(t)\}$ be the determining sequence for $G_t(p)$. By an analog of the Theorem 2.11 of Gunson (1972), for all projections $e, f \in \bigcup_{\alpha} \mathfrak{A}_{\alpha}^{\Pi}$ with $e, f \leq e_m(t)$ we have

$$\begin{aligned} |\mu(e) - \mu(f)| &\leq |\mu(e_0) - \mu(f_0)| + \mu(e_1) + \mu(f_1) \\ &\leq 3.8^{1/2} ||e_0 - f_0|| + \mu(e_1) - \mu(f_1) \\ &\leq 3.8^{1/2} \Delta^{1/2} + t\varphi(e_1) + \varepsilon^m + t\varphi(f_1) + \varepsilon^m \end{aligned}$$
(3)

Let now $\{G_{t_n}(p_n)\}$ be an orthogonal family as in Lemma 1 and let $\{e_m(t_n)\}_{m=1}^{\infty}$ be the determining sequence for $G_{t_n}(p_n)$. Inequalities (3) show that for a projection $e \in \mathfrak{A}^{\Pi}$, $e \leq \sum_{i=1}^{n_0} G_{t_i}(p_i)$ and for every sequence of projections $\{g_m\} \subset \bigcup_{\alpha} \mathfrak{A}^{\Pi}_{\alpha}$, $g_m \leq \sum_{i=1}^{n_0} e_m(t_i)$ that is strongly convergent to $e(g_m \to {}^s e)$ there exists $\lim_{m\to\infty} \mu(g_m) \equiv \tilde{\mu}(e)$ which is independent of $\{g_m\}$ (the sequence $\{g_m\}$ is called determining for e). Moreover, $\tilde{\mu}(e) \leq 2\sum_{i=1}^{n_0} t_i \varphi(e_m(t_i)ee_m(t_i))$. This implies $\tilde{\mu}$ to be strongly continuous in \mathcal{O} on the projections of the reduced algebra \mathfrak{A}_G , where $G \equiv \sum_{i=1}^{n_0} G_{t_i}(p_i)$. If $e_1, e_2 \in \mathfrak{A}^{\Pi}, e_1 \perp e_2$, and $g_m \to {}^s e = e_1 + e_2$, then there exist sequences $\{g'_m\}$ and $\{g''_m\}$ from $\bigcup_{\alpha} \mathfrak{A}^{\Pi}_{\alpha}$ such that $g_m = g'_m + g''_m$ and $g'_m \to {}^s e_1$. Hence $\tilde{\mu}(e_1 + e_2) = \tilde{\mu}(e_1) + \tilde{\mu}(e_2)$. Thus $\tilde{\mu}$ is a countably additive measure on \mathfrak{A}^{Π}_G . Obviously $\tilde{\mu}(e)$ does not depend upon projection \bar{p} and a family of the projections $\{G_{t_n}(p_n)\}$ satisfying $e \leq \sum_{i=1}^k G_{t_i}(p_i)$, $\bar{p} = \sum_i G_{t_i}(p_i)$.

(iii) Extending μ to the lattice \mathfrak{A}^{Π} . Let $\{G_{t_n}(p_n)\}$ be a family of projections as in Lemma 1 for $\overline{p} = I$. If the family $\{G_{t_n}(p_n)\}$ is finite, then the function $\tilde{\mu}$ obviously is a suitable extension of the measure μ . Now suppose that the projection $G_m \equiv \sum_{k=1}^m G_{t_k}(p_k) \neq I$ for all m. Then the set of the projections $\mathfrak{M} \equiv \bigcup_{m=1}^\infty \mathfrak{A}^{\Pi}_{G_m}$ is an ideal of the projections, i.e:

1. $p \in \mathfrak{M}, g \in \mathfrak{A}^{\Pi}, g \leq p \Rightarrow g \in \mathfrak{M}.$ 2. $p, g \in \mathfrak{M}, \|pg\| < 1 \Rightarrow p \lor g \in \mathfrak{M}.$ 3. $\sup_{p \in \mathfrak{M}} p = 1.$

The function $\tilde{\mu}$ is a measure on it. By a theorem of Matvejchuk (1983) $\tilde{\mu}$ can be uniquely extended to a measure $\bar{\mu}$ on \mathfrak{A}^{Π} . Let us show $\bar{\mu}$ to be a suitable extension. We first establish an analog to the inequality $|\mu(e) - \mu(f)| \leq 3.8^{1/2} ||e - f||$, $\forall e, g \in \sum_{\alpha} \mathfrak{A}^{\Pi}_{\alpha}$, for the function $\tilde{\mu}$. Let the projections $e, f \in \mathfrak{N}$ and $\{e_m\}, (e_m \to {}^s e), \{f_m\}, (f_m \to {}^s f)$ be the determining sequences. By the constructions, for every $\varepsilon > 0$ projections e_m and f_m can be chosen such that $||e_m - f_m|| \leq ||e - f|| + \varepsilon$ for all m. Then

$$\begin{split} \left| \tilde{\mu}(e) - \tilde{\mu}(f) \right| &= \lim_{m \to \infty} \left| \mu(e_m) - \mu(f_m) \right| \\ &\leq 3.8^{1/2} \overline{\lim_{m \to \infty}} \left\| e_m - f_m \right\| \\ &\leq 3.8^{1/2} (\left\| e - f \right\| + \varepsilon) \end{split}$$
(4)

Let now a sequence $\{e_m\} \subset \mathfrak{A}^{\Pi}$ be such that $e_m \to {}^s e \in \mathfrak{N}$, where $e_m \leq G_m$ for all m. Let $e = e_0 + e_1$ and $e_m = e_m^0 + e_m^1$ be expansions with $e_1 \to {}^s_{m \to \infty} 0$, $e_m^1 \to {}^s_{m \to \infty} 0$, and $||e_0 - e_m^0|| \to {}_{m \to \infty} 0$. Since $\tilde{\mu}$ is a countably additive measure on \mathfrak{A}_e^{Π} , it follows that $\tilde{\mu}(e_1) \to {}_{m \to \infty} 0$. Similarly, $\bar{\mu}(e_m^1) = \tilde{\mu}(e_m^1) \to {}_{m \to \infty} 0$. By virtue of inequality (4), $\tilde{\mu}(e_m^0) - \tilde{\mu}(e_0) \to {}_{m \to \infty} 0$. Thus $\tilde{\mu}(e) = \lim \tilde{\mu}(e_0) = \lim \tilde{\mu}(e_m^0) = \lim \tilde{\mu}(e_m) = \lim \tilde{\mu}(e_m) = \lim \tilde{\mu}(e_m) = \tilde{\mu}(e)$. Therefore, $\tilde{\mu}$ is an extension of $\tilde{\mu}$ from \mathfrak{N} . Let $p \in \bigcup_{\alpha} \mathfrak{A}_{\alpha}^{\Pi}$.

Measure on the Inductive Limit of Projection Lattices

Obviously $\mu(p) \ge \sup{\{\tilde{\mu}(q): q \in \mathfrak{N}, q \le p\}}$. The process we used in the proof of Lemma 1 enables us to obtain a sequence $\{q_n\} \subset \bigcup_{\alpha} \mathfrak{A}_{\alpha}^{\Pi}$ of mutually orthogonal projections satisfying $\sum_n q_n = p$ and $|\mu(q_n) - \tilde{\mu}(G_{t_n}(q_n))| < \varepsilon^n$ for some $t_n > 0$. Since $\sum_n G_{t_n}(q_n) \le \sum_n q_n = p$, it follows that

$$\mu(p) \ge \sum_{n} \tilde{\mu}(G_{\iota_n}(q_n)) \ge \sum_{n} (\mu(q_n) - \varepsilon^n) = \sum_{n} \mu(q_n) - \frac{\varepsilon}{1 - \varepsilon} = \mu(p) = \frac{\varepsilon}{1 - \varepsilon}$$

Since ε is arbitrary, we have

$$\mu(p) = \sup\{\tilde{\mu}(q) \colon q \in \mathfrak{N}, q \le p\} = \sup\{\bar{\mu}(q) \colon q \in \mathfrak{N}, q \le p\} = \bar{\mu}(p)$$

REFERENCES

- Gunson, J. (1972). Physical states on quantum logics, I, Annals de l'Institut Henri Poincaré A, 17(4), 295–230.
- Matvejchuk, M. S. (1983). Probability measure on an ideal of projections, Veroiatnostnye metody i kibernetika (Kazan), 19, 51-55 [in Russian].